エントリー

カテゴリー「実験・研究」の検索結果は以下のとおりです。

ページ移動

  • ページ
  • 1
  • 2
  • 3
  • 4
  • 5

5V昇圧DCDCを評価の続き

前回の低価格で入手可能な5V昇圧DCDCの続きでオシロスコープで観た結果を追加

環境

入力3.6Vで5Vの昇圧出力,負荷はセメント抵抗で100Ω(50mA)と50Ω(100mA)の出力波形を観察した

IMG_20180218_164655.jpg

出力波形

オシロスコープの表示は縦目盛りを0.5Vにして5Vが中央になるように(0Vは画面下方外)スクロールしている

尚,左が100Ω(50mA),右が50Ω(100mA)の結果

(1)セリア USB charger

IMG_20180218_171101.jpgIMG_20180218_171348.jpg

(2)ダイソー モバイルバッテリー

IMG_20180218_171506.jpgIMG_20180218_171707.jpg

(3)中華 DCDCボード

IMG_20180218_171910.jpgIMG_20180218_172020.jpg

結果

セリアのリップルは問題になる程ではないが100mAになると大きくなっているのが判る

ダイソーはリップルが多く(0.30V位だけど)出力500mAまで使えるのは良いが使うのにためらいを感じる

ダイソーのボードを観るとコイルが基板から浮いているので影響しているのかもしれない

IMG_20180218_182658.jpg

中華はオシロスコープのノイズのみで実質リップルは観られない(50mA→100mAで電圧降下もない)

 

低価格で入手できる5V昇圧DCDCを評価してみる

拙者はAVRを3.3Vで使用すること多いが稀に5Vで使うことがある

単純に5Vを用意すれば良い訳だが運用でなるべく以下のバッテリ(2種)を組み込んで利用したい

(1)秋月のNiMHバッテリ3.6V(使用電圧範囲3~3.8V位)

IMG_20180211_205856.jpg

  • コンパクトながら830mAhと容量があるので長く使用できる

(2)100均ライターから取り出したリポ(使用電圧範囲3~4.2V位)

IMG_20180211_205906.jpgIMG_20180211_210759.jpg

  • 基板ごと取り出してヒーター部を外す
  • タクトスイッチは付け替え電源スイッチとする
  • このままUSB充電できるので便利
  • 容量は少ないので低消費電力運用時利用となる

そこでポータブル用途として使うのを前提に扱い易い5V昇圧DCDCを検討してみた

昇圧回路の自作

最初に思いつくのは基板上に昇圧回路を組み込んでしまうことだ

そのためのパーツとしてHT7750Aを購入してあるのだがデータシートのように性能がでないようである

WS000028.png

気の迷いさん,電気の迷宮さんを参考にさせてもらっても面倒そうに思える

なので今回は(HT7750A版を含めて評価してみようと思ったが止め)100均の昇圧商品や既に購入してある中華のDCDCボードなど出来合いの物だけで評価する

チョイスした昇圧ボード

評価してみる昇圧ボードは以下の3つ

(1)USB charger

IMG_20170701_134325.jpgIMG_20170701_135725.jpgIMG_20180211_205629.jpg

  • セリアの商品
  • 単3アルカリ乾電池または充電池×2個使用
  • DC5.0/最大出力不明(おそらく100~200mA位)

(2)モバイルバッテリー

IMG_20170627_192257.jpgIMG_20170627_192558.jpgIMG_20180211_205715.jpg

  • ダイソーの商品
  • 単3アルカリ乾電池×2個使用
  • DC5.0/500mAh(最大出力)

(3)中華のDCDCボード(Rasbee DC-DC 2A Boost ステップアップ 転換モジュール)

IMG_20180211_205731.jpg

  • 中華製品
  • 1個(税込み)100円(以下)
  • 最大出力電流:2A
  • 入力電圧:2V~24V,最大出力電圧:>28V
出力5V50mA固定で入力電圧を変動させ効率の測定

WS000029.png

  • AVRで使用される電力での効率測定
  • 中華は2Vから動作仕様
  • 使用するバッテリの電圧範囲である3~4V間で中華は90%近く優秀だがダイソーは75%で電圧が高い程よろしくない
入力電圧3.0V,3.6V,4.2Vでの負荷変動による出力電圧と効率の測定

(1)セリア USB charger

WS000030.png

  • 3.6Vと4.2Vは値が同じ
  • 140mAを超えると電圧が保てないので止め

WS000031.png

  • 140mAを超えると電圧が保てないので止め

(2)ダイソー モバイルバッテリー

WS000032.png

WS000033.png

(3)中華 DCDCボード

WS000034.png

WS000035.png

  • 出力電圧は無負荷で5.03Vにしてある
  • 安定した出力電流が得られていた
評価結果

ダイソーのモバイルバッテリーは500mAまで出力できるのだが効率が悪いので入力に余裕が必要

50mA位の出力ならどれを選択しても出力電圧は問題はないだろう

出力電圧を調整でき安定した電流を流せる中華のDCDCボードがコストパフォーマンスも高く抜けている

その他

IMG_20180212_100633.jpg

オシロによる波形測定を忘れていたので後で追加する

3.6Vの組充電池用充電器の試作

秋月電子のニッケル水素電池パックは安価で何かと使える3.6V充電池である

IMG_20170903_153320.jpg

これまで(リポを外した)ダイソーのUSB充電ライターの充電機能を利用して充電していた(真ん中のパーツ)

充電は問題なくできるのだがリポ用のため完全な満充電にはならないのが欠点

今後充電する事が増えそうなので専用の充電器を作製しようとしたら実は半年前に作製しようと設計していた(いろいろあって中止し忘れてしまっていたようだ)

diagram.png

ATTINY13aで充電制御する方式で設計,スケッチがまだなのでプログラミングしていたが,今のところ先日の充電器で十分なため記録だけにしておく(他に完了させないといけない物があるので落ち着いたら組み立てる予定)

上記の回路は問題があり正常に充電できません!(Nch FETにして,スケッチを修正,印加電圧も要調整)

暫定仕様
  • 全体の8~9割までは500mAの急速充電
  • 残りの1~2割は50%位で充電
  • 最終充電電圧を10秒間保持できていたら充電完了
  • LEDの点滅具合で充電状態が判るようにする
スケッチ
//
// ATMEL ATTINY13 / ARDUINO
//
//                 +-\/-+
// ADC0 (D 5) PB5 1|   |8 Vcc
// ADC3 (D 3) PB3 2|    |7 PB2 (D 2) ADC1
// ADC2 (D 4) PB4 3|    |6 PB1 (D 1) PWM1
// GND            4|   |5 PB0 (D 0) PWM0
//                 +----+
// 1: Reset
// 2: LED
// 3: Serial Out
// 4: GND
// 5: PWM(FET SW)
// 6:
// 7: ADC(充電池電圧確認)
// 8: Vcc 3.3V
//
#include <avr/io.h>

#define BAUD_RATE 38400
#include <BasicSerial3.h>

#define PIN_ADC 1   //PB2(ADC1)
#define PIN_LED PB3 //LED
#define PIN_OUT PB4 //SerialOut(Debug)
#define PIN_FET PB0 //FET

#define MCHR_VOLT (1400*3) //最大充電終止電圧(mV)
#define LAST_VOLT (1420*3) //充電終止電圧(mV)

static void serOut(const char *str) {
while(*str) TxByte(*str++);
}

//確認用シリアル出力
static void voltOut(int v) {
char bf[8];

itoa(v, bf, 10); //10は十進数
serOut(bf);
serOut("mV\r\n");
}

//電圧(mV)
static int voltRead() {
    ADCSRA = (1<<ADEN)|(1<<ADSC)|(0<<ADATE)|(0<<ADIF)|(0<<ADIE)|(0b100);
//ADC#3
    loop_until_bit_is_set(ADCSRA,ADIF); //ADC#4
    long v = (long)ADC; //long v = (long)analogRead(PIN_ADC);
    v *= 5000;                           //基準電圧5V
    v /= 1024;
    return((int)v);
}

void setup() {
    DIDR0 = _BV(PIN_ADC);                              //ADC#1: pinMode(PB2, INPUT);
    ADMUX = (0<<REFS0)|(0<<ADLAR)|PIN_ADC; //ADC#2: analogReference(DEFAULT);
    DDRB = (_BV(PIN_LED)|_BV(PIN_FET)|_BV(PIN_OUT));   //pinMode(PIN_LED, OUTPUT);
                                                       //pinMode(PIN_FET, OUTPUT);
                                                       //pinMode(PIN_OUT, OUTPUT);
    OSCCAL = 91;                           //87 - 96 (91, 92)
}

void loop() {
   int volt;

    serOut("Begin.\r\n");

    //MAX充電
   while((volt = voltRead()) < MCHR_VOLT) {
        voltOut(volt);
        PORTB |= _BV(PIN_LED);                         //digitalWrite(PIN_LED, HIGH);
        PORTB |= _BV(PIN_FET);                         //digitalWrite(PIN_FET, HIGH);
        delay(4000);
        PORTB &= ~_BV(PIN_LED);                        //digitalWrite(PIN_LED, LOW);
        delay(1000);
    }

    //残りを50%充電で完了させる
    int final = 5;
    do {
        voltOut(volt);
        PORTB |= _BV(PIN_LED);                         //digitalWrite(PIN_LED, HIGH);
        PORTB |= _BV(PIN_FET);                         //digitalWrite(PIN_FET, HIGH);
        delay(1000);
    PORTB &= ~_BV(PIN_FET);                        //digitalWrite(PIN_FET, LOW);
    PORTB &= ~_BV(PIN_LED);                        //digitalWrite(PIN_LED, LOW);
        delay(1000);
    if((volt = voltRead()) < LAST_VOLT) final = 5;
    } while(--final != 0);

//終了
serOut("End.\r\n");
PORTB &= ~_BV(PIN_LED);                            //digitalWrite(PIN_LED, LOW);
for(;;);
}
コードサイズ
  • arduinoのライブラリを利用すると1Kbytesを超えた
  • ADCを直接ハードウェア操作することで210bytes減る
  • その他も直接操作で最終的に780bytesになっている
  • 確認用のシリアル出力は削除できる
ADC関係
  • ADC#1: デジタル入力抵抗を無効(消費電流が減る)
  • ADC#2: REFS0=Reference: 0でVCC参照, 1で1.1V内部電圧源,ADLAR=0:右詰め,1:左詰め,下位2bitで00から11までADC0からADC3
  • ADC#3: ADEN=ADC有効,ADSC=ADC開始,ADIE=完了割込許可,下位3bitがクロック指定
  • ADC#4: ADIFビットが1の間はAD変換中

メロディICと圧電サウンダ

警告や終了を音で通知するためにメロディICを購入

(本当は1年前に購入していたのだけど)

いつものほったらかし状態から突如,まずは鳴らしてみようとした・・・が・・・結果はかなり嵌った(つまり楽しめた)

チョイス

メロディICは三端子メロディIC(UM66TxxL)等を3種(5曲オルゴールICも先に購入したけど触るのは後になることに)

UM66TxxL共通仕様

  • 動作電圧範囲:1.5V~4.5V
  • 消費電流:16μA(Typ.)

音の出力は大体は小さい物に組み込むことになるので,サイズ・電力的に大きなスピーカーにするわけにはいかないため圧電ブザーと圧電サウンダを選択

電子ブザー(24mm)PKB24SPCH3601

  • 発振周波数:3.6kHz(電源DC12V時)
  • 定格音圧:90dB(電源DC12V時, 10cm)
  • 動作電圧:DC 2~20V
  • 消費電流

 1.8mA(電源DC2V時)
 2.8mA(電源DC3V時)
 5.0mA(電源DC5V時)
 9.0mA(電源DC9V時)
 13mA(電源DC12V時)

圧電スピーカー(圧電サウンダ)(13mm)PKM13EPYH4000-A0

  • 動作電圧範囲:30Vp-p以下

実は,圧電ブザーと圧電サウンダ・圧電スピーカーの違いを知らずに,とりあえず圧電ブザーと圧電サウンダを購入していた

基礎知識(後付け)

  • 圧電サウンダと圧電スピーカーは同じ(以降,サウンダで記載)
  • 圧電サウンダは音が鳴る圧電振動板のみの部品で発音には外部に励発振回路が必要となる
  • 圧電ブザーは圧電サウンダに自励発振回路を組み合わせ一体化したもので直流電源があれば発音する
ファースト発音

接続は以下のとおり

fig1.png

画像クリックで動画(左:圧電ブザー,右:圧電サウンダ)

IMG_20171127_201002.jpgIMG_20171127_200927.jpg

発音は簡単にできて(左)電子ブザーだと終了音程度なら音量的にも十分

しかし電子ブザーはサイズが大きいため,できれば圧電サウンダを使いたい

そこで難点である音量を増大することを試みる

メロディIC

まずはメロディICの波形を観る(左:画像クリックで動画,右:パルス拡大)

IMG_0464.JPGaudio.jpg

音階の出し方はFM音源が実装される前のPC(AppleII,MZ,PC8001とか)など知っていれば判るが,要は矩形波の密度(周波数)を変えることで音階を出している訳だ(PC8001なんか圧電ブザーで苦心の音階を出していたなぁ)

圧電振動版への電圧増加

圧電サウンダの音量を上げるには圧電振動版を大きく振動させることになり大きく振動させるには圧電振動版への電圧を上げる

TrとFETへ変更版で確認(どちらもスイッチ的使用)

圧電サウンダは電圧を与えないと鳴らない(電圧駆動)ため並列で抵抗を入れる

fig2.pngfig3.png

R1を,1kΩ,100kΩ,330Ωと変更してみたところ1kΩが一番大きい音量であった

圧電振動版へ3V,5V,12Vと変えて与えてみると少しは大きくなるが大して音量は上がらない

更に電圧を上げても大幅に変化しそうにないと考え止めた

IMG_20171130_182513.jpg

1つの結論

電圧を上げても劇的には音量はあがらないようだ(警告音とかは瞬間的に大きい電圧を発生しているらしい)

では何故電子ブザーは,それなりの音量を発生させているのか・・・調査すると共振を利用しているようだ

そこで試しに圧電サウンダを基板に付け共振させてみる(動画はなし)と・・・

IMG_20171203_200240.jpg

音量が上がることを確認,美味く共振させれば十分な音量になりそうな感じだ

最終的な回路は以下とした(発生起電力を抑制するためダイオード入れた)

fig4.png

追加

周波数の違いによる音量の変化を確認(デサルフェータ―で作製したパルスジェネレータを改良して実験)

IMG_20171207_195938.jpg

3kHzの音量が大きかった(だけど・・・耳が年なんで強弱は判断できないだろうと思う)

ページ移動

  • ページ
  • 1
  • 2
  • 3
  • 4
  • 5

ユーティリティ

検索

エントリー検索フォーム
キーワード

過去ログ

Feed